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1 Introduction 

The success of MLFMA in solving large scale problems has naturally led to efforts 
in parallelizing the algorithm. Several academic and industrial research groups have 
made significant progress in their attempts [1, 2. See references therein]. We have 
shown that the parallel implementation of MLFMA developed at the University of 
Illinois, called ScaleME, has excellent scaling properties [2j. 

In this paper, we summarize the results of our efforts in developing a scalable dis- 
tributed memory fast electromagnetic integral equation solver. The massively paral- 
lel scattering code, called LSSP, is based on a Galerkin discretization of the combined 
field integral equation (CFIE) using the RWG basis functions. The resulting matrix 
equation is then solved using a parallel GMRES solver [3], It uses the distributed 
memory parallel MLFMA library called ScaleME for evaluating matrix-vector prod- 
ucts and Message Passing Interface (MPI) for inter-processor communication. Fur- 
thermore, once the solution is obtained, the bistatic RCS is computed using a par- 
allelized, MLFMA based, far field evaluation algorithm [1]. The objective of this 
paper is to present some recent results demonstrating the scalability of the code for 
solving realistic problems. 

2 Summary of Parallelization of MLFMA 

The basic idea in parallelizing MLFMA can be described as follows: for the top 
(coarse) few levels, replicate the boxes in every processor, but split the far field 
patterns equally among all processors. For the finer levels, divide the boxes at each 
level equally among the processors. 

The levels that are replicated in every processor are called "shared" levels, and the 
levels for which the grain size is retained to be a box are called "distributed" levels. 
Clearly, this scheme divides the tree horizontally into different layers, each layer 
consisting of one or more levels. These overlapping layers are the shared layer, the 
transition layer, and the distributed layer. Each layer has distinct, communication 
and computational behaviors. For instance, for the distributed layer, communica- 
tions are necessary during all three phases, viz. the aggregation, translation, and 
disaggregation phases. However, for the shared and transition layers, no communi- 
cation is necessary during the translation phase. Furthermore, during the aggrega- 
tion and disaggregation phases, these two layers require communication of partial 
radiation/receiving patterns. In fact, during the aggregation and the disaggrega- 
tion phases, the parallel interpolation and anterpolation operations are required. 



However, since each processor has only Ns/p samples of the far field pattern, the 
maximum length of the messages is bounded by the same amount. Indeed, using a 
local interpolation/anterpolation scheme, the length of the message can be reduced 
from O(N) to Diva) [2]. 

3    Parallel MLFMA based RCS computations 

The evaluation of RCS after solving the matrix equation is computationally expen- 
sive. To see this, note that evaluating the RCS in a single direction requires O(N) 
operations. For large scale problems, the number of directions in which the RCS 
is sought on one plane cut is 0(y/N), thereby requiring a total evaluation time of 
0(iV15). Furthermore, the proportionality constant is rather large owing to the 
various geometric computations involved. 

In this section, we briefly discuss a method by which the bistatic RCS can be eval- 
uated rapidly using parallel computers. The bistatic RCS can be written as, 
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where f* is the i-th basis function and on the corresponding coefficient. Also, we 
have set s — (1,9, (/>). For a given point c G E3, 

Fm(s) = k(I - ss) ■ I fm(v')eikS<c-^ dS', (2) 

is the radiation pattern of the m-th basis function. By setting c = 0, we see that 
the summand in Equation (1) is the radiation pattern of the m-th basis function 
with respect to the origin. 

Since we have the radiation patterns of the basis functions with respect to the finest 
level of MLFMA tree, we can compute the sum in Equation (1) using the upward 
pass of MLFMA. However, the upward pass needs to be supplemented with an in- 
terpolation at the top-most level. This interpolation must be parallelized efficiently. 

Depending on whether the algorithm uses shared levels or not, the parallelization 
requires two different approaches. In the absence of shared levels, parallelization 
involves only a global reduction operation after the interpolation to the root box. 
When shared levels are present, the algorithm has to take into account sparsity in 
the data structures and thus is more involved. The details of these methods are 
described in [1]. 

4    Numerical Results 

We have verified the correctness and the accuracy of the code by comparing with 
analytical solutions for perfectly conducting spheres, as well as by comparing with 
other results available from literature. Here we present two sets of results demon- 
strating the scalability of the methods employed. Let p be the number of processors 
and T\ and Tp be the time taken by the algorithm on one processor and on p pro- 
cessors, respectively. Then, the parallel efficiency is rj = Ti/(pTp). 



First, we demonstrate the parallel efficiency of MLFMA for evaluating matrix vector 
products. For this, we consider the scattering from a 15A perfectly conducting cube 
modeled using 294,912 unknowns. The parallel efficiency is plotted in Figure 1. The 
figure demonstrates that the shared levels improves the efficiency significantly as the 
number of processors is increased. This behavior is consistent with the theoretical 
analysis [2]. However, it may also be noted that by increasing the number of shared 
levels from 2 to 3 does not improve the performance very much. In fact, we have 
observed that depending on the geometry, there is a range of shared levels for which 
the performance is more or less the same. Finally, the "superlinear" performance 
exhibited for a small number of processors is a result of machine dependent memory 
hierarchy. 
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Figure 1: Parallel efficiency for the case CUBE-15A. SLEV refers to the finest shared 
level used in the simulation. 

Next, we demonstrate the scalability of the code with respect to the number of 
unknowns using a full-size, fictitious aircraft, referred to as VFY-218. We study 
the model with 625,626 unknowns at 2 GHz and 2,464,536 unknowns at 4 GHz. 
The total run time for the first case was about 2 hours and 13 minutes and about 
5 hours for the second. The time for evaluating the matrix-vector product and for 
evaluating the RCS for 1800 directions are given in Table 1. The results demonstrate 
very good scaling. 

Num. Proc MatVec Time(s) RCS Eval. Time(s) 
2 GHz 4 GHz 2 GHz 4 GHz 

16 
32 
64 

59.55 
30.87 111.16 

64.41 

10.71 
6.40 20.02 

11.35 

Table 1: Demonstration of scalability with respect to problem size for the full scale 
model of an aircraft, VFY-218. At 2 GHz, the number of unknowns N = 625,626 
and at 4 GHz, N = 2,464,536. 
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Finally, we present the bistatic RCS of the aircraft model at 8 GHz. The tour-de- 
force simulation involved 10,186,446 unknowns and we used a 10-level MLFMA, 
and 126 processors of an SGI Origin 2000 supercomputer. The total solution time 
was 7 hours and 25 minutes and each matrix-vector product evaluation required 119 
seconds. The latter results again shows the scaling with respect to the problem size. 
The bistatic RCS for the vertical polarization with an incident direction of (90,90) 
is shown in Figure 2. 
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Figure 2: Bistatic RCS of VFY-218 at 8 GHz. N = 10,186,446. 

5    Conclusions 

The objective of the paper was to present a brief summary of the scalable parallel 
code we have developed for electromagnetic scattering computations. We have pre- 
sented representative results demonstrating the excellent scalability obtained. More 
detailed results will be presented at the conference. 
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